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BIOINFORMATICS

A structural database for k-turn motifs in RNA

KERSTEN T. SCHROEDER, SCOTT A. MCPHEE, JONATHAN OUELLET, and DAVID M.J. LILLEY
Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee DD1 5EH, United Kingdom

ABSTRACT

The kink-turn (k-turn) is a common structural motif in RNA that introduces a tight kink into the helical axis. k-turns play an
important architectural role in RNA structures and serve as binding sites for a number of proteins. We have created a database
of known and postulated k-turn sequences and three-dimensional (3D) structures, available via the internet. This site provides
(1) a database of sequence and structure, as a resource for the RNA community, and (2) a tool to enable the manipulation and
comparison of 3D structures where known.
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INTRODUCTION

Kink turns in RNA

The kink-turn (usually abbreviated to k-turn) is a widespread
structural motif in RNA, first noted as a repeated struc-
tural element in the large ribosomal subunit by Steitz and
coworkers (Klein et al. 2001). It introduces a very tight kink
into the axis of helical RNA, from whence its name. It clearly
plays an important structural role in RNA and is significant
in many aspects of RNA function including translation,
modification and splicing, as well as genetic regulation.

The canonical k-turn comprises a 3-nucleotide (nt) bulge
flanked on its 39 side by AdG and GdA base pairs (the non-
canonical [NC] stem), and on its 59 side by a section of
regular base pairing (the canonical [C] stem) (Fig. 1A; Klein
et al. 2001). Kt-7 of the 23S rRNA of the Haloarcula
marismortui ribosome can be regarded as the archetypal
k-turn sequence. The structure introduces a pronounced
kink in the RNA, with an included angle between the axes
of z60° (Fig. 1B). The minor grooves of the two helices are
juxtaposed, and the conformation is stabilized by interac-
tions between the stacked adenosines of the AdG base pairs
and the C stem, and by stacking of the 59 and central bases of
the bulge on the ends of the C and NC stems, respectively. In
order to adopt the tightly kinked geometry, k-turn motifs

require the presence of metal ions (Goody et al. 2003;
Matsumura et al. 2003) or the binding of proteins (Turner
et al. 2005). In the absence of either of these factors, the RNA
adopts a conformation that is more extended, like any 3-nt
bulge in a duplex (Lilley 1995). This suggests a dynamic char-
acter for k-turn structures sampling both the kinked and a
more extended geometry. Computer modeling studies have
suggested that k-turns undergo hinge-like motions on a fast
timescale (Cojocaru et al. 2005; Razga et al. 2005, 2006).

At the time of writing, there are 33 unique k-turns (with or
without known structures, classing any given k-turn type such
as Kt-7 as a single member of the group), of which 18 have one
or more structures determined by X-ray crystallography. In
some cases multiple examples are available from different
organisms, giving 32 different structures altogether, found in
14 separate Protein Data Bank files. These are present within
ribosomal subunits or smaller RNA species with or without
bound protein and provide a valuable resource of structural
information on these important elements. We have devised
a universal nomenclature for the nucleotide positions in
k-turns (Fig. 1; Liu and Lilley 2007), thus avoiding the con-
fusion that could arise from the many different numbering
systems used in various crystal structures.

The occurrence of k-turns in RNA

The k-turn was first identified as a novel motif occurring
multiple times in the ribosome (Klein et al. 2001). Further
examples have been found in mRNA (Mao et al. 1999;
Winkler et al. 2001; Allmang et al. 2002; White et al. 2004)
and in riboswitches (Montange and Batey 2006; Blouin and
Lafontaine 2007; Heppell and Lafontaine 2008). They are
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very commonly found in C/D and H/ACA guide snoRNAs
and in U3 snoRNA species (Kuhn et al. 2002; Watkins et al.
2002; Bortolin et al. 2003; Marmier-Gourrier et al. 2003;
Rozhdestvensky et al. 2003; Hamma and Ferré-D’Amaré
2004; Moore et al. 2004; Szewczak et al. 2005; Youssef et al.
2007). There is also a near-canonical k-turn in a stem–loop
of the human U4 snRNA (Vidovic et al. 2000; Wozniak
et al. 2005). Some k-turns have been identified unequivo-
cally, from their structure in situ within crystal structures of
larger RNA structures or complexes. Others are assumed by
virtue of their sequence and perhaps their homology with
known k-turns in related species.

The interactions that stabilize the kinked geometry
of the k-turn

The great majority of k-turns have a GdA pair at the 1bd1n
position and an AdG pair at the 2bd2n position. Sequence
substitution of any of the four nucleotides is highly detrimen-
tal to folding (Goody et al. 2003). Both are trans sugar edge (G)
to Hoogsteen edge (A) pairs, linked by potential hydrogen
bonds G-N2 to A-N7 and A-N6 to G-N3. We have found
experimentally that all four hydrogen bonds are important
to the stability of the kinked form of the RNA. But the G-N2
to A-N7 hydrogen bonds of the two GdA pairs are the most
critical to the stability of the kinked form of Kt-7 in Mg2+

ions, so that folding is completely prevented by G to inosine
substitutions at either position (Turner and Lilley 2008).

In addition to the bonds linking the GdA pairs, a number of
critical hydrogen bonds involving 29-OH groups play a key
role in stabilizing the kinked structure. The most important
are those in the core of the turn and ribose–phosphate in-
teractions around the bulge. These are strongly conserved in
all k-turns and are critical to folding. Of these, the single-
most important hydrogen bond is one donated from the
29-O of L1 ribose to the N1 of the A1n in the kink-proximal
AdG pair. This is present in all known k-turn structures, and
removal of the 29-OH from L1 completely prevents metal
ion-induced folding (Liu and Lilley 2007). Another critical

hydrogen bond stabilizes the tight turn made at the loop of
the k-turn. An interaction between the 29-O of L3 and the
proS nonbridging O of the phosphate between L1 and L2
bridges the neck of the turn, and is observed in most k-turn
crystal structures. Removal of the 29O from L3 ribose in Kt-7
led to marked impairment of ion-induced folding (Liu and
Lilley 2007). Other hydrogen bonds can be found in in-
dividual k-turns, of lower conservation. In general, these
make a smaller contribution to the stability of the kinked
conformation. These include hydrogen bonds formed be-
tween the C and NC stems outside of the central core.

Standard and complex k-turns

Many k-turns fit closely to the secondary structure of the
standard structure, exemplified by Kt-7. A few, however,
‘‘break the rules’’ of the standard motif. The archaeal box
H/ACA RNA species lack the entire canonical stem, yet still
fold. Some k-turns have sequence changes that alter the
seemingly essential GdA pairs. In Kt-23 of Thermus ther-
mophilus (Wimberly et al. 2000), the 2bd2n pair is a non-
Watson–Crick AdU pair. Although making the same change
in Kt-7 totally prevents folding from occurring, Kt-23 folds
efficiently on addition of Mg2+ ions, and its structure in the
30S ribosomal subunit is superimposable with that of Kt-7
(Schroeder and Lilley 2009).

Another set of k-turns does not map onto the standard
form of the sequence as exemplified by Kt-7 in a linear way.
Despite major departures of the sequences from the conven-
tional k-turn, these form standard k-turn three-dimensional
(3D) structures. We recommend naming the nucleotides
according to their location in the structure, rather than their
position in the linear sequence. Thus, the adenine paired with
G2n in H. marismortui Kt-15 should be termed 2b, even
though it is located on the nonbulged strand.

Protein binding by k-turn RNA

The majority of k-turns are known to bind one or more
proteins. A few are not, including that found in the SAM
riboswitch (Montange and Batey 2006).

The archetypal k-turn binding protein is the ribosomal
L7Ae and related proteins. The binding of L7Ae to k-turn-
containing RNA is an example of induced fit (Turner et al.
2005). Even in the absence of added metal ions, the kinked
conformation is induced by the binding of the protein.
Moreover, the binding occurs with extremely high affinity.
We have measured a dissociation constant of Kd = 10 pM
for Archeoglobus fulgidus L7Ae binding to Kt-7 (Turner and
Lilley 2008). L7Ae and related proteins form a family of
RNA-binding proteins including the eukaryotic and ar-
chaeal proteins L7Ae, L30e, and S12e (Koonin et al. 1994),
the yeast Nhp2p and Snu13p proteins, and the human
15.5 kDa protein (Nottrott et al. 1999). Each of these pro-
teins binds k-turn motifs in RNA, and some functional

FIGURE 1. The k-turn sequence and structure. (A) The secondary
structure of a typical k-turn. Nucleotides are numbered according to
our nomenclature that can be applied to most k-turns (Liu and Lilley
2007). The 3bd3n position is frequently non-Watson–Crick paired,
but the 4bd4n position is usually, but not always, a Watson–Crick base
pair. (B) The structure of Kt-7 from the 50S ribosomal subunit of H.
marismortui, an archetypal k-turn. The NC (yellow) and C (gray)
helices are highlighted by the cylinders, clearly showing the tight angle
between the two axes.
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substitutions are tolerated (Rozhdestvensky et al. 2003). The
assembly of the RNA methylation (box C/D) nucleoproteins
are initiated by the binding of L7Ae-type proteins to k-turns
contained within the guide RNA (Kiss-Laszlo et al. 1996),
and L7Ae binding to box H/ACA RNA is also necessary for
functional assembly of H/ACA RNP complexes (Ganot et al.
1997). The 15.5 kDa protein binds a k-turn of the U4 stem–
loop in the U4-U6.U5 tri-snRNP (Nottrott et al. 1999).
Crystal structures are available for the complexes of A.
fulgidus L7Ae and box C/D RNA (Moore et al. 2004),
Methanococcus jannaschii L7Ae and box H/ACA RNA
(Hamma and Ferré-D’Amaré 2004), and the human 15.5
kDa protein and the U4 snRNA (Vidovic et al. 2000). In each
case, the k-turn adopts the tightly kinked conformation in
the complex with the protein.

A role for k-turns in building complex RNA
structures?

Kink turns could play a key role in RNA architecture and the
biogenesis of large assemblies. The dynamic character of the
k-turn might allow RNA to explore conformational space,
but once folded the tight kink should provide long-range
organization of the structure. We may speculate that this
provides flexibility during the assembly of the structure,
but the geometry is then fixed in place by the high-affinity
binding of key proteins to k-turns.

THE K-TURN DATABASE

We have made a detailed study of the structure and folding
of k-turns in solution, induced by the addition of metal
ions and proteins. The k-turn provides a simple model sys-
tem for the study of RNA folding because of its relatively
small size and the availability of a significant number of
crystallographic structures. The juxtaposition of (1) anal-
ysis of folding by biophysical methods (generally FRET) in
conjunction with the ability to dissect interactions at the
atomic level by means of functional group substitution and
(2) the availability of numerous crystal structures proved a
powerful combination. We recognized the need to collect
together sequence and structural information on k-turn
motifs in a way that would make comparisons possible. We
therefore created a database that makes this a relatively easy
process. The original motivation for the creation of this
structural database was to provide a tool for the compar-
ison of different k-turn structures for use within our own
laboratory. However, we then realized that this could be
useful to other laboratories interested in RNA structure and
function, and therefore decided to make this generally avail-
able as a visual-oriented web-based tool. It is conceivable
that the internet site could also be used as an aid in teach-
ing. The internet site is available at http://www.dundee.ac.
uk/biocentre/nasg/kturn/index.php. The main purpose of
this site is to tabulate all known and putative k-turns, and

to provide the means of presenting sequence information
and displaying 3D structures in a way that can be manip-
ulated and compared in a molecular graphics format. A site
map is shown in Figure 2.

The front page

The front page of this website presents a short review of the
occurrence, structure, and function of k-turns. All the
structures are illustrated by movies that help provide a 3D
perspective. They are started by clicking on the images and
can be opened in a separate window if desired (this may be
required on some older platforms).

The menus

The front page also provides a menu box from which it is
possible to navigate to the main functional areas of the
database. The ‘‘kink-turns in RNA’’ link provides a list of all
currently known k-turns and their secondary structure,
which we shall update with time. It is subdivided into two
pages. These are: (1) ‘‘Known structures,’’ listing k-turns for
which the structures are known from X-ray crystallography
or NMR; and (2) ‘‘Putative sequences,’’ listing probable
k-turns suggested by their sequence alone. A third page entitled
‘‘k-turns by location’’ classifies the known and putative k-turn
elements according to their source, such as 23S rRNA, mRNA,
riboswitches, and other.

There are further links to pages where new developments
are highlighted, such as new papers that present k-turn
data, acknowledgments, etc., and a page for contacting the
investigators with comments and questions.

Presentation of sequence and structural data
for each k-turn

The real functionality in this website is revealed when the name
of a given k-turn is clicked. This navigates to a page dedicated
to that k-turn in particular, where the sequence and structural
data are displayed (Fig. 3). Sequence information is displayed
on the left-hand side. The secondary structure is shown,
annotated according to the Westhof convention (Leontis and
Westhof 2001). Below this is shown the consensus sequence
from an alignment of the sequence from various organisms
and sources (Cannone et al. 2002; Gardner et al. 2009),
generated using WebLogo 3 (Crooks et al. 2004).

The structural information is presented on the right-
hand side of the screen. The structure is visualized using the
molecular interactive web browser applet Jmol (McMahon
and Hanson 2008). A 3D representation of the structure is
available via either wall-eye or cross-eye stereo pairs, and
can be rotated and zoomed via the mouse as normal (left
and center click, respectively). The structure is color coded
as in the sequence and can be viewed in a variety of stick
and space-filling formats. A right-click in the graphics win-
dow reveals the regular drop-down menu for Jmol.

A web-based k-turn RNA database
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At the lower-right of the graphics window there are tick
boxes that allow the current k-turn to be overlayed with
H. marismortui Kt-7 (Blaha et al. 2008) and others related
to the current k-turn. However, within this site there is a
more powerful tool that allows the comparison of known
k-turn structures in any combination.

Three-dimensional structure alignment

A unique feature of this website is the ability to use Jmol
to align any of the k-turns to each other. The ‘‘pairwise
alignment’’ link brings up a blank Jmol window, and two
different k-turn structures can be chosen for structural

comparison using the drop-down menus at the lower left.
The two structures are aligned via the backbone and non-
bridging oxygen atoms (O59, C59, C49, C39, O39, P, O1P,
and O2P) for nucleotides preselected to represent the key
k-turn positions, using either the best atom correlation
(Kabsch 1976) (as in PyMOL [DeLano 2002]) or the best
base correlation (using quaterions) (Horn 1986). The aligned
structures may be manipulated using stereo images in Jmol as
before, and the two structures may be differentiated by adding
25% CPK atoms to one structure, making the second k-turn
60% transparent or temporarily (using toggle buttons) hiding
one or other structure. The Jmol command window (lower
right) displays a record of the presentation and alignment of

FIGURE 2. A map of the k-turn internet site. The front page (top right) presents a review of k-turn structures in RNA. The main functional pages
are accessed via the menus at the top left of the web page.
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the structures, and it provides the root-mean-square deviation
for the atoms used in the superposition.

This alignment tool should prove very useful for the
analysis of k-turn conformation, and we believe it will be
particularly valuable for the analysis of the complex k-turns.

FURTHER DEVELOPMENT OF THE DATABASE

In addition to providing a commitment to the maintenance
and updating of the k-turn database, we are also considering
ways in which to improve its functionality. We hope to in-
troduce a database search tool that will search for a given k-turn
or variant within a sequence alignment database of different
organisms. The aim is to enable the user to find interesting
variations of specific k-turn sequence, facilitating experimen-
tal design. We would also like to add the capability to model the
structure of an unknown k-turn based on its sequence and
similarity to known structures. A longer-term goal is to develop
an algorithm that will search genomic sequence databases for
new examples of k-turns that can be studied. Finally, the pres-
ent site makes no reference to proteins that bind to k-turns, yet
these form a very interesting and diverse set of interactions.

We plan to tabulate these interacting partners, and to present
the structures by means of molecular graphics.

In principle the approach used to present and manipulate
structural information on k-turns could be applied to other
structural motifs in RNA, and we hope that this might be
implemented by other laboratories. We further anticipate
that it could be possible to combine such databases to allow
the study of many RNA motifs in a single web-based struc-
tural analysis tool.

USER FEEDBACK

We would like to make this web tool maximally useful to
other laboratories, and we seek fresh perspectives on how this
might be improved or extended. Users are encouraged to
contact us with comments and suggestions via the ‘‘contacts’’
link on the site, or by normal e-mail.
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